Ziqi Yin 1,2Fangfei Li 1,2Yunke Sun 1,2Yun Zou 1,2[ ... ]Jiubin Tan 1,2
Author Affiliations
Abstract
1 Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China
2 Key Laboratory of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China
We propose an absolute distance measurement method that employs heterodyne and superheterodyne combined interferometers to achieve synchronous detection and demodulation of multiwavelengths. Coarse and fine synthetic wavelengths are generated by a dual-longitudinal-mode He–Ne laser and four acoustic optical frequency shifters. Further, to improve phase synchronization measurement for multiwavelengths, we analyze the demodulation characteristics of coarse and fine measurement signals and adopt a demodulation method suitable for both signals. Experimental results demonstrate that the proposed method can achieve high-precision synchronous demodulation of multiwavelengths, and standard deviation is 1.7 × 10-5 m in a range of 2 m.
multiwavelength absolute distance superheterodyne interferometry phase synchronization 
Chinese Optics Letters
2024, 22(1): 011204
Author Affiliations
Abstract
1 Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China
2 Key Laboratory of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China
Laser ranging with frequency comb intermode beats (IMBs) has been suffering from random phase drifts (RPDs) for two decades. In this study, we reveal the influence of signal transmission path on the RPDs and propose a real-time suppression method using two IMBs of similar frequencies from different combs. As the two IMBs obtain similar RPDs during their transmission through same signal paths, the RPD of the original probing signal IMB is suppressed by deducting the RPD of the newly added local IMB in real time. In our experiments, a real-time suppression of RPDs is achieved using IMBs of 1001 and 1000 MHz. For the sampling time of 100 s, the effect of 19-fold suppression has been achieved. The proposed method provides a new solution for the long-standing phase drift problem in laser ranging with comb IMBs.
intermode beat random phase drift laser ranging 
Chinese Optics Letters
2023, 21(4): 041202
杨宏兴 1,2付海金 1,2胡鹏程 1,2,*杨睿韬 1,2[ ... ]谭久彬 1,2
作者单位
摘要
1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080
2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080

针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激光真空波长相对准确度最高达9.6×10-10,位移分辨力为0.077 nm,光学非线性误差最低为13 pm,最大测量速度为5.37 m/s。目前该系列仪器已成功应用于我国350 nm至28 nm多个工艺节点的光刻机样机集成研制和性能测试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。

光学设计与制造 激光干涉 超精密高速位移测量 
激光与光电子学进展
2022, 59(9): 0922018
Author Affiliations
Abstract
1 Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, China
2 Key Laboratory of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China
We propose a precision phase-generated-carrier (PGC) demodulation method with sub-nanometer resolution that avoids nonlinear errors in a laser wavelength sinusoidal modulation fiber-optic interferometer for long range dynamic displacement sensing. Using orthogonal detection and an AC-DC component extraction scheme, the PGC carrier phase delay (CPD) and laser intensity modulation phase delay can be obtained simultaneously to eliminate the nonlinear error from accompanied optical intensity modulation and CPD. Further, to realize long range displacement sensing, PGC phase modulation depth (PMD), determined by the laser wavelength modulation amplitude and the working distance of the interferometer, is required to maintain an optimal value during measurement, including initial position and dynamic movement. By combining frequency sweeping interference and modified PGC-arctan demodulation to measure real-time working distance, adaptive PMD technology is realized based on proportion control. We construct a fiber-optic Michelson and SIOS commercial interferometer for comparison and perform experiments to verify the feasibility of the proposed method. Experimental results demonstrate that an interferometer with sub-nanometer resolution and nanometer precision over a large range of 400 mm can be realized.
Photonics Research
2022, 10(1): 01000059
Author Affiliations
Abstract
1 Ultra-Precision Optoelectronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, China
2 Postdoctoral Research Station of Optical Engineering, Harbin Institute of Technology, Harbin 150001, China
A beam combination setup for a dual-frequency laser with orthogonal linear polarization is proposed. It consists of two polarizing beam splitters (PBSs) whose polarization axes are orthogonal to each other. A theoretical analysis demonstrates that a combined dual-frequency laser beam with this setup strictly meets orthogonal linear relation. The experimental results show that compared with the conventional setup, the ellipticity and nonorthogonality of the combined dual-frequency laser beam are significantly reduced.
120.0120 Instrumentation, measurement, and metrology 120.3180 Interferometry 140.3298 Laser beam combining 280.3420 Laser sensors 
Chinese Optics Letters
2015, 13(10): 101201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!